NASA Fusion Jet
The journey time from Earth orbit to Mars could be slashed from six
months to less than six weeks if NASA's idea for a nuclear
fusion-powered engine takes off.
The space-flight engine is being developed by a team led by Bill
Emrich, an engineer at NASA's Marshall Space Flight Center in
Huntsville, Alabama. He predicts his fusion drive would be able to
generate 300 times the thrust of any chemical rocket engine and use
only a fraction of its fuel mass.
That means interplanetary missions would no longer need to wait for a
"shortest journey" launch window. You can launch when you want.
The principle is to sustain an on-board fusion reaction and fire some
of the energy created out the back of the spacecraft, generating
thrust. Of course, harnessing fusion is no easy task. Scientists have
struggled to contain the super-hot plasmas of charged ions needed for
fusion reactions.
Bare nuclei
To achieve fusion, scientists heat the hydrogen isotopes deuterium and
tritium to at least 100 million kelvin. This strips electrons from the
isotopes, creating a plasma of bare nuclei. If this plasma is hot and
dense enough, the two types of nuclei fuse, giving off neutrons and
huge amounts of energy.
However, the plasma can only be contained by strong magnetic fields,
and creating containment fields that do not leak has proved very
difficult. What is more, no one has managed to generate a stable
fusion reaction that passes the "break-even" point, where the reaction
is generating more energy than it takes to sustain it.
Fortunately for Emrich, the reaction would not need to go far beyond
the break-even point to generate thrust. And containment is less of a
headache because you actually want some of the plasma to escape, he
says. "That's where the thrust comes from."
The problem is 100 million kelvin is not hot enough to generate
thrust. At that temperature, the fusion reaction only generates
neutrons, which are uncharged and therefore cannot be steered and
fired through a magnetic jet nozzle. To produce thrust, you need
charged particles.
Bold solution
Emrich is proposing a bold solution. He wants to use microwaves to
heat the plasma to 600 million kelvin, triggering a different kind of
fusion reaction that generates not neutrons but charged alpha
particles - helium nuclei. These can then be fired from a magnetic
nozzle to push the craft along.
Emrich has tested the idea with a scaled-down version using an argon
plasma. He found that he could get around many of the containment
problems by using a long, cylindrical magnetic field with powerful
magnets at each end (see graphic).
In a fusion drive, the fields at the end could easily be controlled to
release the highly energetic alpha particles and propel the craft.
If fusion researchers can ever achieve stable, break-even fusion,
Emrich believes a full-scale fusion drive - perhaps 100 metres long -
could be ready and waiting within two decades.
Nuclear fusion could power NASA spacecraft
No comments:
Post a Comment